Nonunitarity certificates

David Vogan

Noncommutative Geometry and Analysis on Homogeneous Spaces William & Mary January 16–20, 2023 Nonunitarity

Vogan

Introduction

Ga

Parabolic induction

induction

Outline

Nonunitarity Vogan

Introduction

 \widehat{G}_{a}

Parabolic induction

nduction

Cayley transforn

Introduction

Admissible dual

Parabolic induction and unitary representations

Cohomological induction and unitary representations

Introduction

C

Parabolic induction

induction

Cayley transform

G real reductive Lie $\supset K$ maximal compact.

Assume G = real pts of conn reductive cplx algebraic group.

Want to describe $\hat{G}_u =$ unitary dual: equiv classes of irreducible unitary representations. This is hard.

Harish-Chandra: larger set $\hat{G}_a = \text{adm dual easier}$.

Start with Langlands' parametrization of \hat{G}_a .

Unitary dual \rightsquigarrow understand $\widehat{G}_u \subset \widehat{G}_a$.

Do this in two steps:

- 1. Understand tempered dual $\widehat{G}_t \subset \widehat{G}_a$. This is easy.
- 2. Understand \hat{G}_u as small deformation of \hat{G}_t .

Plan is that discussion of (1) should re-do some of Nigel's lectures; and that the details of that discussion will arm us with tools for approaching (2).

 \widehat{G}_t = union of real forms of these vec spaces.

 $\widehat{G}_u = \widehat{G}_t \cup \text{small imaginary deformations.}$

Example: $G = SL(2, \mathbb{C}), K = SU(2), \widehat{K} \simeq \mathbb{N}.$

$$\widehat{G}_a = \{(n, \nu) \in \mathbb{N} \times \mathbb{C}\}$$

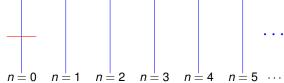
One complex line for each $n \in \widehat{K} \simeq \mathbb{N}$.

 $\widehat{G}_t = \{(n, \nu) \in \mathbb{N} \times i\mathbb{R}\}$ unitary princ series

One real line for each $n \in \widehat{K} \simeq \mathbb{N}$.

$$\widehat{G}_{u} = \{(n, \nu) \in \mathbb{N} \times i\mathbb{R}\} \cup \{(0, \nu) \mid \nu \in [-1, 1]\}$$

Deform (only) first line by adding compact interval.



Nonunitarity

Vogan

Introduction

Gá

Parabolic induction

nduction

What's the admissible dual look like?

```
admissible rep \pi \leadsto Cartan subgroup H(\pi) = T(\pi)A(\pi)
\leadsto character \nu(\pi) \colon A(\pi) \to \mathbb{C}^{\times}
\leadsto character \lambda(\pi) \colon T(\pi) \to \mathbb{C}^{\times}
\leadsto \Pi_{\text{im}}(\pi) of simple singular imag roots
```

Character $\nu(\pi)$ controls growth of mat coeffs of π at infinity.

```
\pi tempered \iff real part of \nu(\pi) is zero. \pi bounded \iff real part of \nu(\pi) is in "W \cdot \rho."
```

Pair $(\lambda(\pi), \Pi_{\text{im}}(\pi)) \iff \text{lowest } K\text{-types of } \pi$ differential of $\lambda(\pi) \approx \text{highest wt of LKTs}$

HC, Langlands, Knapp, Zuckerman: invts determine π ;

Also show which $(H(\pi), \nu(\pi), (\lambda(\pi), \Pi_{im}(\pi)))$ occur.

Nonunitarity

Vogan

ntroduction

 \widehat{G}_a

Parabolic induction

nduction

Which $(H, \nu, (\lambda, \Pi_{im}))$?

A parameter is a tuple as above satisfying

requirements on $p = (H, \nu, (\lambda, \Pi_{im}))$:

- 1. H = TA any θ -stable Cartan subgroup
- 2. $\nu \in \mathfrak{a}_{\mathbb{C}}^* \simeq \widehat{A}$
- 3. $\lambda \in [X^*(H) + \rho] / [(1 \theta)X^*(H)] \simeq \hat{T} + \rho$
- 4. $\Pi_{im} = \text{simple system for imaginary roots zero on } \lambda$.
- 5. Π_{im} consists of noncompact roots. (NONZERO)

Last, we will often impose ONE of the following conditions.

6.
$$\nu = 0$$
 on real $\alpha^{\vee} \implies \langle \lambda - \rho, \alpha^{\vee} \rangle$ even. (FINAL)

7.
$$\lambda \neq 0$$
 on every imaginary β^{\vee} . (*M*-REGULAR)

(1)–(3)
$$\rightsquigarrow$$
 (λ, ν) = any character of H (up to ρ shift).

Set $MA = Cent_G(A)$, cuspidal Levi subgroup of G.

HC theory of discrete series → limit of discrete series rep

$$\delta = \delta(p) = \delta(T, (\lambda, \Pi_{\mathsf{im}})) \in \widehat{M}$$

$$\rightarrow$$
 $I(p)=I(H,\nu,(\lambda,\Pi_{im}))=\operatorname{Ind}_{P}^{G}(\delta\otimes\nu\otimes 1)=\operatorname{standard}$ rep

Condition (5) $\iff \delta \neq 0$.

Condition (6) $\iff \delta$ is a discrete series representation.

Standard reps are stars of the Langlands classification.

Nonunitarity

Vogan

Introduction

Parabolic induction

nduction

Start with parameter $p = (H, \nu, (\lambda, \Pi_{im}))$

Purpose of parameter is → standard representation

$$I(p) = I(H, \nu, (\lambda, \Pi_{im})) = \operatorname{Ind}_{P}^{G}(\delta \otimes \nu \otimes 1)$$

Standard rep has finite set of lowest K-types, all with mult one. depending only on δ . The Langlands factor of I(p) is

J(p) = sum of comp factors containing a lowest K-type

Irreducibles in J(p) are part of a Langlands L-packet.

Theorem (Langlands) Each irr rep of G is a summand of $J(p_{reg})$ for exactly one M-regular parameter p_{reg} .

Theorem (Knapp-Zuckerman) If p_{fin} is a final parameter, then $J(p_{\text{fin}})$ is irreducible. Each irr rep of G appears in this way for exactly one nonzero final parameter p_{fin} .

So there is a finite-to-one correspondence

 $\widehat{G}_{a} \longrightarrow \text{nonzero } M\text{-reg params mod } K \text{ conjugacy}$

summands of $J(p) \longrightarrow \text{parameter } p_{\text{reg}}$

Similarly, there is a bijection

 $\widehat{G}_a \longleftrightarrow$ nonzero final params mod K conjugacy $J(p_{fin}) \longleftrightarrow parameter p_{fin}$

$$\mathit{MA} = \langle \mathit{H}, \mathsf{roots} \; \mathsf{zero} \; \mathsf{on} \; \mathit{A} \rangle = \langle \mathit{H}, \mathsf{imaginary} \; \mathsf{roots} \rangle.$$

$$p \rightsquigarrow \text{limit of discrete series } \delta \in \widehat{M}_t \text{ unitary.}$$

Unitarity of $p \leftrightarrow unitarity$ of induction from MA to G.

Easy case: J(p) tempered $\iff \nu \in i\mathfrak{a}^*$.

Extend this: how does ν fail to be pure imaginary?

Define
$$(MA)_{re} = \langle H, \text{roots real on } \nu \rangle \supset MA$$
.

Theorem (see Knapp "Overview"). $J_G(p)$ is unitary \iff

- 1. $J_{M_{re}}(p)$ is unitary, and
- 2. $\nu_{\rm re} = \nu|_{A_{\rm re}}$ is unitary.

Theorem is reduction of unitary dual to real infl char.

By definition of M_{re} , $J_{M_{re}}(p)$ has real infl char.

Unitary reps of nonreal infl char only from real parab ind.

Nonunitarity

Vogan

Introduction

Ga

Parabolic induction

induction

Cplxification of real parab subalg $\mathfrak{p} = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$ satisfies

$$\theta(\mathfrak{m} + \mathfrak{a}) = \mathfrak{m} + \mathfrak{a}, \qquad \theta(\mathfrak{n}) = \mathfrak{n}^{\mathsf{op}}.$$

Cplx parab subalg $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$ is θ -stable if

$$\theta(\mathfrak{l}) = \mathfrak{l}, \qquad \theta(\mathfrak{u}) = \mathfrak{u}.$$

Seek to relate unitarity of J(p) to θ -stable parabolics.

Param
$$p = (H = TA, \nu, (\lambda, \Pi_{im})) \rightsquigarrow \theta$$
-stab parab $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$, $L = \langle H, \text{roots zero on } T \rangle = \langle H, \text{real roots} \rangle$ $\Delta^{\vee}(\mathfrak{u}, H) \supset \text{coroots positive on } \lambda$

Condition does not specify $\mathfrak u$ uniquely, but that will not matter; like indeterminacy of N in parabolic MAN attached to p.

$$p$$
 for G (inf char γ) $\leadsto p_L$ for L (inf char $\gamma - \rho(\mathfrak{u})$).

L is split,
$$I(p_L) = \text{minimal principal series for } L$$
.

$$I(p_L) \stackrel{\text{coh ind}}{\longleftrightarrow} I(p)$$
. How does cohom ind affect unitarity?

Nonunitarity

Vogan

Introduction

Ĝa

Parabolic induction

Cohomological induction

Parabolic induction

induction

Cayley transforms

Example: G = SL(2, R), K = SO(2), $\widehat{K} \simeq \mathbb{Z}$.

 $H_s = T_s A_s = \{\pm I\} \times \mathbb{R}^{>0}, X^*(H) = \mathbb{Z}, \rho = 1, \mathfrak{a} \simeq \mathbb{R}.$

Parameter p_s on H_s is $(\lambda_s = \epsilon_s, \nu_s)$, $\epsilon_s \in \mathbb{Z}/2\mathbb{Z}$, $\nu_s \in \mathbb{C}$.

All p_s are M-regular since no imaginary roots.

 p_s is final UNLESS ϵ_s is even and $\nu = 0$.

Standard rep $I(p_s)$ is principal series $I((\epsilon_s - 1) \otimes \nu_s)$.

- (1) If ϵ_s odd, K-types of $I(p_s)$ are $\{\mu_{2m}\}$. Only LKT is triv = μ_0 ; $J(p_s)$ is spherical comp factor.
- (2a) If ϵ_s even, K-types of $I(p_s)$ are $\{\mu_{2m+1}\}$. LKTs are = $\{\mu_{\pm 1}\}$.
- (2b) If $\nu \neq 0$ (p_s FINAL) then { $\mu_{\pm 1}$ both appear in one composition factor $J(p_s)$.
- (2c) If $\nu = 0$ (p_s NOT FINAL) then $J(p_s) = J(p_s)^+ \oplus J(p_s)^-$, each summand with one LKT.

What does *M*-REGULAR mean?

Continued example: G = SL(2, R), K = SO(2), $\widehat{K} \simeq \mathbb{Z}$.

$$H_c = SO(2) = T, X^*(H) = \mathbb{Z}, \rho = 1, \mathfrak{a} = 0.$$

Param p_c on H_c is $\lambda_c = n_c \in \mathbb{Z}$ AND choice of $\epsilon_c = \pm 1$ if $n_c = 0$.

All p_c are final since no real roots; p_c *M*-regular iff $n_c \neq 0$.

In this case $I(p_c) =$ discrete series with HC parameter n_c .

K-types of $I(p_c)$ are $\mu_{n_c+\operatorname{sgn}(n_c)(2m+1)}$ $(m \in \mathbb{N}.$

Always irr, with unique lowest K-type $\mu_{n_c+sgn(n_c)}$.

Just two parameters are not M-regular: (0, +) and (0, -)

Standard rep I(0, +) is hol limit of disc ser, K-types $\{1, 3, 5, 7 \cdots\}$, LKT = +1

Standard rep I(0, -) is antihol limit of disc ser, K-types $\{-1, -3, -5, -7 \cdots\}$, LKT = -1

Always irr, with unique lowest K-type $\mu_{n_c+sgn_c}$.

Nonunitarity

Vogan

ntroduction

a

Parabolic induction

nduction

Cayley transforms of parameters I

 $p = (H, \nu, (\lambda, \Pi_{im}))$ nonzero NONFINAL parameter.

Means there is a real coroot α^{\vee} with

$$\langle \nu, \alpha^{\vee} \rangle = \mathbf{0}, \qquad \langle \lambda, \alpha^{\vee} \rangle \text{ even}.$$

ppprox param for reducible temp princ ser for $SL(2,\mathbb{R})_{lpha^ee}.$

Same $SL(2,\mathbb{R})_{\alpha^{\vee}}$ provides more compact Cartan

$$H_c = \mathsf{Cayley}(H, \alpha) = T_c A_c, \quad A_c = \ker(\alpha|_A).$$

NONFINAL condition guarantees that we can Cayley transform p to two parameters, at least one nonzero

$$p_c^{\pm} = (H_c, \nu_c, (\lambda_c, \Pi_{\mathsf{im},c}^{\pm})).$$

 $\lambda_c \leftrightarrow \lambda + m\alpha$, m chosen so $\langle \lambda_c, \alpha_c^{\vee} \rangle = 0$; p_c^{\pm} NOT M-reg.

Hecht-Schmid identity $I(p) = I(p_c^+) + I(p_c^-)$.

Technicality: because of disconnectedness (e.g. $GL(2,\mathbb{R})$), might be one parameter p_c . Char ident is then $I(p) = I(p_c)$.

Gives one-to-several map

non-final nonzero params \longrightarrow non-M-regular nonzero params.

Nonunitarity

Vogan

Introduction

Ga

Parabolic induction

nduction

Cayley transforms of parameters II

 $p = (H, \nu, (\lambda, \Pi_{im}))$ nonzero NON-*M*-REGULAR parameter.

Means there is an imaginary coroot $\beta^{\vee} \in \Pi_{im}$ with

$$\langle \lambda, \beta^{\vee} \rangle = \mathbf{0}.$$

Nonzero assumption guarantees β^{\vee} is noncompact. $p \approx$ param for limit of discrete series for $SL(2,\mathbb{R})_{\beta^{\vee}}$.

Same $SL(2,\mathbb{R})_{\beta^{\vee}}$ provides more split Cartan

$$H_s = \mathsf{Cayley}(H, \beta) = T_s A_s, \quad T_s \supset \ker(\beta|_T).$$

We can Cayley transform *p* to one nonzero parameter

$$p_s = (H_s, \nu_s, (\lambda_s, \Pi_{\mathsf{im},s})).$$

Here ν_s extends ν by 0 on the span of the real root α_s , and $\lambda_s \leftrightarrow \lambda$, which is zero and therefore even on α^\vee ; so α_s^\vee exhibits p_s as non-final.

Gives one-to-several (because of choice of β^{\vee}) map non-*M*-regular nonzero params \longrightarrow non-final nonzero params.

Nonunitarity

Vogan

Introduction

 G_{i}

Parabolic induction

nduction

Knapp-Stein R-groups

Nonunitarity

Vogan

Introductio

 \widehat{G}_a

Parabolic inductio

Jonomolo nduction

Cayley transforms

Suppose $p = (H, \nu, (\lambda, \Pi_{im}))$ is M-regular \rightsquigarrow discrete series rep of M.

Parabolic induction

induction

Cayley transforms

Described how NON-FINALITY of a nonzero parameter allowed moving it to one or more parameters on a more compact Cartan.

In the same way, NON-M-REGULARITY of a nonzero parameter allowed moving it to one or more parameters on a more split Cartan.

Doing both things provides equivalence relation on nonzero parameters. Equivalence classes are *R*-packets.

Theorem Suppose *G* is real reductive.

- Each R-packet contains a unique M-regular parameter p_{fin}, which may be characterized as living on the most split Cartan for the packet.
- Each R-packet has exactly 2^r final params p_{fin}, which may be characterized as living on the most compact Cartan for the packet.