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What’s the plan?

G real reductive Lie ⊃ K maximal compact.

Assume G = real pts of conn reductive cplx algebraic group.

Want to describe Ĝu = unitary dual: equiv classes of
irreducible unitary representations. This is hard.

Harish-Chandra: larger set Ĝa = adm dual easier.

Start with Langlands’ parametrization of Ĝa.

Unitary dual understand Ĝu ⊂ Ĝa.

Do this in two steps:

1. Understand tempered dual Ĝt ⊂ Ĝa. This is easy.
2. Understand Ĝu as small deformation of Ĝt .

Plan is that discussion of (1) should re-do some of Nigel’s
lectures; and that the details of that discussion will arm us
with tools for approaching (2).
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Elevator pitch for the talk

Ĝa = union of cplx vec spaces indexed by K̂ .
Ĝt = union of real forms of these vec spaces.
Ĝu = Ĝt ∪ small imaginary deformations.

Example: G = SL(2,C), K = SU(2), K̂ ' N.

Ĝa = {(n, ν) ∈ N× C}
One complex line for each n ∈ K̂ ' N.

Ĝt = {(n, ν) ∈ N× iR} unitary princ series

One real line for each n ∈ K̂ ' N.

Ĝu = {(n, ν) ∈ N× iR} ∪ {(0, ν) | ν ∈ [−1,1]}
Deform (only) first line by adding compact interval.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 · · ·

· · ·
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What’s the admissible dual look like?

admissible rep π  Cartan subgroup H(π) = T (π)A(π)

 character ν(π) : A(π)→ C×

 character λ(π) : T (π)→ C×

 Πim(π) of simple singular imag roots

Character ν(π) controls growth of mat coeffs of π at infinity.

π tempered ⇐⇒ real part of ν(π) is zero.

π bounded! real part of ν(π) is in “W · ρ.”

Pair (λ(π),Πim(π))! lowest K -types of π

differential of λ(π) ≈ highest wt of LKTs

HC, Langlands, Knapp, Zuckerman: invts determine π;

Also show which (H(π), ν(π), (λ(π),Πim(π))) occur.



Nonunitarity

Vogan

Introduction

Ĝa
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Which (H, ν, (λ,Πim))?
A parameter is a tuple as above satisfying

requirements on p = (H, ν, (λ,Πim)):
1. H = TA any θ-stable Cartan subgroup
2. ν ∈ a∗C ' Â
3. λ ∈ [X∗(H) + ρ] / [(1− θ)X∗(H)] ' T̂ + ρ
4. Πim = simple system for imaginary roots zero on λ.
5. Πim consists of noncompact roots. (NONZERO)

Last, we will often impose ONE of the following conditions.
6. ν = 0 on real α∨ =⇒ 〈λ− ρ, α∨〉 even. (FINAL)
7. λ 6= 0 on every imaginary β∨. (M-REGULAR)

(1)–(3) (λ, ν) = any character of H (up to ρ shift).
Set MA = CentG(A), cuspidal Levi subgroup of G.

HC theory of discrete series limit of discrete series rep

δ = δ(p) = δ(T , (λ,Πim)) ∈ M̂

 I(p)= I(H, ν, (λ,Πim)) = IndG
P (δ ⊗ ν ⊗ 1) = standard rep

Condition (5) ⇐⇒ δ 6= 0.

Condition (6) ⇐⇒ δ is a discrete series representation.

Standard reps are stars of the Langlands classification.
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How does Langlands classification work?
Start with parameter p = (H, ν, (λ,Πim))

Purpose of parameter is standard representation

I(p) = I(H, ν, (λ,Πim)) = IndG
P (δ ⊗ ν ⊗ 1)

Standard rep has finite set of lowest K -types, all with mult one,
depending only on δ. The Langlands factor of I(p) is

J(p) = sum of comp factors containing a lowest K -type

Irreducibles in J(p) are part of a Langlands L-packet.
Theorem (Langlands) Each irr rep of G is a summand of J(preg)
for exactly one M-regular parameter preg.
Theorem (Knapp-Zuckerman) If pfin is a final parameter, then
J(pfin is irreducible. Each irr rep of G appears in this way for
exactly one nonzero final parameter pfin.
So there is a finite-to-one correspondence

Ĝa −→ nonzero M-reg params mod K conjugacy

summands of J(p) −→ parameter preg

Similarly, there is a bijection
Ĝa ←→ nonzero final params mod K conjugacy

J(pfin)←→ parameter pfin
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Real parabolics
Parameter p = (H = TA, ν, (λ,Πim)) MA = CentG(A)
Levi subgroup of real parabolic.

MA = 〈H, roots zero on A〉 = 〈H, imaginary roots〉.

p  limit of discrete series δ ∈ M̂t unitary.

Unitarity of p! unitarity of induction from MA to G.

Easy case: J(p) tempered ⇐⇒ ν ∈ ia∗.

Extend this: how does ν fail to be pure imaginary?

Define (MA)re = 〈H, roots real on ν〉 ⊃ MA.

Theorem (see Knapp “Overview”). JG(p) is unitary ⇐⇒

1. JMre (p) is unitary, and
2. νre = ν|Are is unitary.

Theorem is reduction of unitary dual to real infl char.

By definition of Mre, JMre (p) has real infl char.

Unitary reps of nonreal infl char only from real parab ind.
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θ-stable parabolics
Cplxification of real parab subalg p = m + a + n satisfies

θ(m + a) = m + a, θ(n) = nop.

Cplx parab subalg q = l + u is θ-stable if

θ(l) = l, θ(u) = u.

Seek to relate unitarity of J(p) to θ-stable parabolics.

Param p = (H = TA, ν, (λ,Πim)) θ-stab parab q = l + u,

L = 〈H, roots zero on T 〉 = 〈H, real roots〉
∆∨(u,H) ⊃ coroots positive on λ

Condition does not specify u uniquely, but that will not matter;
like indeterminacy of N in parabolic MAN attached to p.

p for G (inf char γ) pL for L (inf char γ − ρ(u)).

L is split, I(pL) = minimal principal series for L.

I(pL)
coh ind
 I(p). How does cohom ind affect unitarity?
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What does FINAL mean?

Example: G = SL(2,R), K = SO(2), K̂ ' Z.

Hs = TsAs = {±I} × R>0, X∗(H) = Z, ρ = 1, a ' R.

Parameter ps on Hs is (λs = εs, νs), εs ∈ Z/2Z, νs ∈ C.

All ps are M-regular since no imaginary roots.

ps is final UNLESS εs is even and ν = 0.

Standard rep I(ps) is principal series I((εs − 1)⊗ νs).

(1) If εs odd, K -types of I(ps) are {µ2m}. Only LKT is triv = µ0;
J(ps) is spherical comp factor.

(2a) If εs even, K -types of I(ps) are {µ2m+1}. LKTs are = {µ±1}.
(2b) If ν 6= 0 (ps FINAL) then {µ±1 both appear in one

composition factor J(ps).
(2c) If ν = 0 (ps NOT FINAL) then J(ps) = J(ps)+ ⊕ J(ps)−,

each summand with one LKT.
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What does M-REGULAR mean?
Continued example: G = SL(2,R), K = SO(2), K̂ ' Z.

Hc = SO(2) = T , X∗(H) = Z, ρ = 1, a = 0.

Param pc on Hc is λc = nc ∈ Z AND choice of εc = ±1 if nc = 0.

All pc are final since no real roots; pc M-regular iff nc 6= 0.

In this case I(pc) = discrete series with HC parameter nc .

K -types of I(pc) are µnc+sgn(nc)(2m+1) (m ∈ N.

Always irr, with unique lowest K -type µnc +sgn(nc ).

Just two parameters are not M-regular: (0,+) and (0,−)

Standard rep I(0,+) is hol limit of disc ser, K -types
{1, 3, 5, 7 · · · }, LKT = +1

Standard rep I(0,−) is antihol limit of disc ser, K -types
{−1,−3,−5,−7 · · · }, LKT = -1

Always irr, with unique lowest K -type µnc +sgnc .
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Cayley transforms of parameters I
p = (H, ν, (λ,Πim)) nonzero NONFINAL parameter.

Means there is a real coroot α∨ with
〈ν, α∨〉 = 0, 〈λ, α∨〉 even.

p ≈ param for reducible temp princ ser for SL(2,R)α∨ .

Same SL(2,R)α∨ provides more compact Cartan
Hc = Cayley(H, α) = TcAc , Ac = ker(α|A).

NONFINAL condition guarantees that we can Cayley
transform p to two parameters, at least one nonzero

p±c = (Hc , νc , (λc ,Π
±
im,c)).

λc ↔ λ+ mα, m chosen so 〈λc , α
∨
c 〉 = 0; p±c NOT M-reg.

Hecht-Schmid identity I(p) = I(p+
c ) + I(p−c ).

Technicality: because of disconnectedness (e.g. GL(2,R)),
might be one parameter pc . Char ident is then I(p) = I(pc).

Gives one-to-several map
non-final nonzero params −→ non-M-regular nonzero params.
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Cayley transforms of parameters II
p = (H, ν, (λ,Πim)) nonzero NON-M-REGULAR
parameter.

Means there is an imaginary coroot β∨ ∈ Πim with

〈λ, β∨〉 = 0.

Nonzero assumption guarantees β∨ is noncompact.
p ≈ param for limit of discrete series for SL(2,R)β∨ .

Same SL(2,R)β∨ provides more split Cartan
Hs = Cayley(H, β) = TsAs, Ts ⊃ ker(β|T ).

We can Cayley transform p to one nonzero parameter
ps = (Hs, νs, (λs,Πim,s)).

Here νs extends ν by 0 on the span of the real root αs,
and λs ↔ λ, which is zero and therefore even on α∨; so
α∨s exhibits ps as non-final.

Gives one-to-several (because of choice of β∨) map
non-M-regular nonzero params −→ non-final nonzero params.
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Knapp-Stein R-groups

Suppose p = (H, ν, (λ,Πim)) is M-regular discrete
series rep of M.
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Packets of parameters

Described how NON-FINALITY of a nonzero parameter
allowed moving it to one or more parameters on a more
compact Cartan.

In the same way, NON-M-REGULARITY of a nonzero
parameter allowed moving it to one or more parameters
on a more split Cartan.

Doing both things provides equivalence relation on
nonzero parameters. Equivalence classes are R-packets.

Theorem Suppose G is real reductive.

1. Each R-packet contains a unique M-regular
parameter pfin, which may be characterized as living
on the most split Cartan for the packet.

2. Each R-packet has exactly 2r final params pfin, which
may be characterized as living on the most compact
Cartan for the packet.
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